Untersuchungen zur Trennung der Seltenen Erden durch Ionenaustausch, 2. Mitt.:

Ionenaustauschgleichgewichte in Gegenwart von Acetat

Von

J. Mikler, Helga Auer-Welsbach und A. Brukl

Aus dem Institut für Anorganische Chemie der Universität Wien

Mit 1 Abbildung

(Eingegangen am 5. November 1962)

Messungen der Verteilungskoeffizienten für die Ionenaustauschgleichgewichte S.E.³⁺ — NH_4^+ (S.E. = Y, La, Pr, Nd, Sm und Eu) in Gegenwart von Acetat (Ac) bestätigen die bei relativ niedrigen Acetatkonzentrationen aufgefundene Elutionssequenz. Bei höheren Konzentrationen ergeben sich Überschneidungen der " K_v — c_{Ac} -Kurven". Es wird gezeigt, daß bei Betrachtung ausschließlich des Einflusses der Komplexbildung wegen der komplizierten Stöchiometrie im Falle einzähniger Liganden, wie des Acetations, Verschiebungen zu erwarten sind, falls die Differenzen entsprechender Stabilitätskonstanten verschiedenes Vorzeichen haben. Der Einfluß der "Austauschaffinitäten" wird insoferne berücksichtigt, als nur solchen Änderungen mögliche Realität zugestanden wird, welche Verschiebungen in Richtung auf die normale, durch die Ionengrößen bedingte Sequenz darstellen.

In einer früheren Arbeit¹ wurde mitgeteilt, daß bei der Acetatelution der S. E. von stark sauren Kationenaustauschern (Dowex 50×8) Unstimmigkeiten zwischen den Komplexstabilitäten und der beobachteten Elutionssequenz bestehen. Besonders im Falle des Yttriums, welches unter den beschriebenen Versuchsbedingungen zwischen Samarium (bzw. Ytterbium) und Neodym eluiert wird, während es auf Grund der Komplexstabilität dem Praseodym nahestehen sollte, ist diese Erscheinung deutlich ausgeprägt. Um sicherzustellen, daß nicht etwa störende Einflüsse (Kinetik) der durchströmten Packung diese Abweichungen

¹ H. Auer-Welsbach, K. Knotik, J. Mikler und A. Brukl, Mh. Chem. 93, 1388 (1962).

J. Mikler u. a.: Trennung der Seltenen Erden durch Ionenaustausch 125

bedingen, wurden an einigen S. E.-Acetatsystemen (S. E. = Y, La, Pr, Nd, Sm und Eu) die Verteilungskoeffizienten des Ionenaustausches für den Gleichgewichtsfall gemessen. Das untersuchte Konzentrationsintervall betrug 0.5-2.0 n Gesamtacetatkonzentration.

Der Verteilungskoeffizient ist das Verhältnis der Konzentrationen des untersuchten Stoffes in der Austauscherphase und in der Lösung, gemessen im Gleichgewichtszustand. Die Konzentration im Austauscher wird häufig im mval je Gramm getrockneten Austauschermaterials ausgedrückt; der resultierende Verteilungskoeffizient ist der bekannte $K_{\rm d}$ -Wert. Um die erhaltenen Daten gegebenenfalls besser für die Optimierung des chromatographischen Prozesses verwenden zu können, haben wir — etwas abweichend vom üblichen Vorgehen — unsere Konzentrationsmessung durchgehend auf Volumsbasis gestellt. Bedeutet $X_{\rm S. E.}$ die Konzentration eines S. E.-Elementes in mval je cm³ gequollenen Austauschers und $c_{\rm S. E.}$ seine Konzentration in der Lösung in gleichen Einheiten, dann ist der hier verwendete Verteilungskoeffizient durch die Gleichung

$$K_{\rm v} = X_{\rm S. E.} / c_{\rm S. E.} \tag{1}$$

definiert. Er ist dimensionslos und steht nach $Glückauf^2$ im Falle einer Elutionschromatographie in einfacher Beziehung zum Elutionsvolumen (V_{\max}) , welches dem Konzentrationsmaximum des eluierten Stoffes im Ablauf entspricht. Wenn α den Anteil des Lösungsvolumens am gesamten Packungsvolumen (V_{P}) bedeutet, dann gilt

$$V_{\max} = a \cdot V_{\rm P}, \qquad (2)$$

mit $a = (1 - \alpha) \cdot K_{\rm v} + \alpha.$

Kommt somit bei einer chromatographischen Trennung das Ionenaustauschgleichgewicht zum Tragen, so sollte die Elutionssequenz durch die Werte der Verteilungskoeffizienten festgelegt sein.

Experimentelles

Die Gleichgewichtsansätze bestanden aus je 5 g standardisierter NH₄⁺-Form von Dowex 50 × 8 und je 5 ml der Ausgangslösungen, deren Zusammensetzung aus Tab. 1 ersichtlich ist. Innerhalb einer Meßreihe wurde jeweils die S. E.-Konzentration ($c_{S, E}$) konstant gehalten, während die Acetatkonzentration (c_{Ac}) variierte. Zur Herstellung der S. E.-Lösungen dienten spektralreine Oxide des Y, La, Pr, Nd, Sm und Eu. Durch Lösen in genügend Essigsäure und mehrmaliges Abdampfen wurden die Acetate hergestellt. Berechnete Mengen dieser Präparate (bezogen auf den experimentell bestimmten S. E.-Gehalt) wurden in Ammoniumacetatlösungen unterschiedlicher Konzentration gelöst. Die Mengen waren so bemessen, daß die resultierende S. E.-Konzentration ($c_{S, E}$) für alle Lösungen innerhalb eines Systems

² E. Glückauf in "Ion Exchange and its Applications", Soc. chem. Ind. 1955, S. 34.

126 J. Mikler, Helga Auer-Welsbach und A. Brukl: [Mh. Chem., Bd. 94]

	Konzentration [mval/cm ³]								
	1.	2.	3.	4.	ö .	6.	7.	8.	
<i>c</i> ⁰ _V	0,425	0,422	0,422	0,424	0,425	0,425	0,500	0,500	
CONH AC ····	0,096	0,188	0,270	0,396	0,504	0,593	1,100	1,600	
c^{0}_{Ac}	0,521	0,610	0,692	0,820	0,929	1,018	1,600	2,100	
с ⁰ т.а	0.441	0.442	0,442	0,438	0,438	$0,\!438$			
C ⁰ NH Ac	0,095	0,195	0,319	0,395	0,507	0,705			
c ⁰ Ae · · · · · · ·	0,536	0,637	0,761	0,833	0,945	1,143			
c^{0} pr	0,428	0,429	0,428	0,431	0,429	0,430	0,429	0,431	
C ⁸ NH.Ac ····	0,096	0,188	0,270	0,396	0,504	0,593	1,100	1,600	
6 ⁰ Ac	0,524	0,617	0,698	0,827	0,933	1,023	1,529	2,031	
c ⁰ Nd	0,431	0,429	0,429	0,429	0,430	0,430	0,430	0,430	
C ⁰ NH.4c · · · ·	0,096	0,188	0,270	0,396	0,504	0,593	1,100	1,600	
6 ⁰ Ae	0,527	0,617	0,699	0,825	0,934	1,023	1,530	2,030	
c^0 sm	0,433	0,433	0,433	0,433	0,433	0,432	0,435	0,429	
C ⁰ NH.Ac · · · ·	0,095	0,195	0,319	0,395	0,507	0,705	1,100	1,600	
<i>c</i> ⁰ Ac	0,528	0,628	0,752	0,828	0,940	1,137	1,535	2,029	
c^0 Eu	0,431	0,431	0,430	0,431	0,428	0,428	$0,\!431$	0,425	
C ⁰ NH.Ac	0,095	0,195	0,319	0,395	0,507	0,705	1,100	1,600	
c_{Ac}^{0}	0,526	0,626	0,749	0,826	0,935	1,133	1,531	2,025	

Tabelle 1. Konzentration der Ausgangslösungen

konstant war. Tab. 1 gibt die Zusammensetzung der verwendeten Ausgangslösungen an. Die Ammoniumacetatlösungen wurden durch Lösen des kristallisierten Salzes in Wasser hergestellt, ihr Gehalt nach der Ionenaustauschmethode von Samuelson³ bestimmt.

Der Kationenaustauscher Dowex 50×8 (NH₄⁺; 50–100 mesh) wurde in einer standardisierten gequollenen Form eingesetzt, um Konzentrationsverschiebungen, lediglich auf Grund von Quellungsänderungen, so gut wie möglich auszuschalten. Die Standardisierung erfolgte durch Zentrifugieren der reinen unter Wasser aufbewahrten Ammoniumform des Harzes unmittelbar vor seiner Verwendung. Als günstig erwies sich eine Zentrifugierdauer von 30 Min. bei 2000 U/min. Dabei hat sich die von Helfferich⁴ beschriebene Anordnung sehr gut bewährt. Die mit dem Austauscher gefüllten Glasfrittentiegel (Typ 20 G/G 1) waren am verjüngten Ende mit Gummischeiben versehen, welche im konischen Teil der Zentrifugengläser festsaßen und im unteren Teil genug Raum für die abgetrennte Flüssigkeit ließen. Die Güte dieser Standardisierung wurde überprüft, indem über einen größeren Zeitraum hinweg gewogene Mengen des solcherart standardisierten Materials quantitativ in eine kleine Chromatographiersäule übergeführt, mit HCl in die H⁺-Form gebracht und anschließend mit 0,5 n-NaCl-Lösung eluiert wurden. Die in Freiheit gesetzte Salzsäure konnte mit gestellter Natronlauge titriert und aus dem Verbrauch die Kapazität je Gramm eingesetzter standardisierter Ammoniumform des Austauschers berechnet werden. Tab. 2 gibt über die erhaltenen Ergebnisse Auskunft.

³ R. Djurjeldt, J. Hansen und O. Samuelson, Svensk kem. Tidskr. 59, 14 (1947); Chem. Abstr. 41, 3009 (1947).

^{*} F. Helfferich, Ionenaustauscher; Weinheim 1959, S. 220.

Gramm standard. AT. (NH ₄ +) einges.	Verbrauch cm ³ 0,4 n NaOH	Kapazität mval/g standard. AT
4,9980	34,20	$2,73_{7}$
5,1760	35,40	$2,73_{5}$
5,1553	35,25	$2,73_{2}$
4.9722	34,00	2.73_{5}

Tabelle 2. Austauschkapazitäten*

Versuche, das Austauschermaterial unter Verwendung humidistatischer Systeme in bezug auf seinen Quellungszustand zu normieren, waren weniger gut reproduzierbar.

Die Phasentrennung an den äquilibrierten Systemen erfolgte auf die gleiche Weise. Die Festlegung ausschließlich auf Volumskonzentration machte allerdings Dichtemessungen an beiden Phasen notwendig. Deshalb wurde vor dem Zentrifugieren ein entsprechender Teil des Ansatzes in ein Pyknometer (ca. 3 cm³ Inhalt) übergeführt, das Gewicht des Pyknometerinhaltes (Q_{Py}) bestimmt, zentrifugiert und die abgetrennte Austauscherphase nochmals gewogen (\overline{Q}_{Py}). Genauso wurde mit dem Rest des Ansatzes verfahren und durch Addition das Gewicht der gesamten Austauscherphase (\overline{Q}) ermittelt. Anschließend wurde noch die Dichte der Gleichgewichtslösung (ρ_L) bestimmt. Aus diesen Daten errechnet sich das Volumen der Austauscherphase in einem der Gleichgewichtslage entsprechendem Quellungszustand aus der Beziehung:

$$\overline{V} = \frac{\overline{Q}}{\overline{Q}_{Py}} \left(V_{Py} - \frac{Q_{Py} - \overline{Q}_{Py}}{\rho_L} \right)$$
(3)

worin $V_{\rm Py}$ das Pyknometervolumen bedeutet und die übrigen Größen die im Text gegebene Bedeutung haben. Die abgetrennten und vereinigten Austauscherphasen wurden nun in eine kleine Säule gebracht und die aufgenommene S.E.-Menge durch Elution mit ca. 10proz. Ammoniumacetatlösung quantitativ in ein Becherglas eluiert und durch Hydroxidfällung bestimmt. Bezeichnet man die gefundene S.E.-Menge in Millival mit $n_{\rm S.E.}$ dann ist

$$X_{\mathrm{S. E.}} = n_{\mathrm{S. E.}} / V \tag{4}$$

Die Konzentration der Lösung $(c_{\rm S. E.})$ wurde durch schonendes Verdampfen eines gemessenen Volumens Lösung unter einem Oberflächenverdampfer und anschließendes Verglühen zum Oxid bestimmt.

Ergebnisse und Diskussion

Tab. 3 enthält die an den einzelnen Systemen gemessenen weschlichsten Daten. Unter Beschränkung auf die untersuchten Elemente ist ersichtlich, daß bis zur Gesamt-acetatkonzentration der Spalte 3 Elutionssequenz und K_v -Werte übereinstimmen. Bei höheren Konzentrationswerten des Komplexbildners ergeben sich im Bereiche von Samarium, Europium und Yttrium Umgruppierungen in der der Größe nach geordneTabelle 3. Versuchsergebnisse und Verteilungskoeffizienten

	r ttrium							
	1.	2.	3.	4.	5.	6.	7.	8.
CAe	0,521	0,610	0,692	0,820	0,929	1,018	1,600	2,100
$X_{\mathbf{Y}} \dots \dots$	0,454	0,434	0,412	0,347	0,318	0,294	0,161	0,102
cy	0,038	0,063	0,084	0,140	0,172	0,194	0,387	0,427
$\bar{K_v}$	11,9	6,9	4,9	2,5	1,8	1,5	0,4	0,24
			Lar	than				
CAC	0,536	0,637	0,761	0,853	0,945	1,143		
X_{La}	0,540	0,529	0,513	0,492	0,470	0,415		
ста	0,016	0,025	0,041	0,055	0,074	0,117		
$\overline{K_{\mathrm{v}}}$	33,8	20,9	12,5	9,0	6,4	3,0		
			Prase	eodym				
CAR	0.524	0,617	0.698	0,827	0,933	1,023	1,529	2,031
$X_{\rm Pr}$	0.486	0,491	0.457	0,419	0,381	0,359	0,211	0,129
Cpr	0,024	0,034	0,052	0,087	0,114	0,139	0,254	0,324
$\hat{K_v}$	20,1	14,4	8,8	4,8	3,3	2,6	0,83	0,40
			Nec	odym				
640	0.527	0.617	0.699	0.825	0.934	1.023	1.530	2,030
XNd	0.473	0.460	0,440	0,393	0,380	0,338	0,194	0,117
CNd	0,028	0,046	0,068	0,102	0,134	0,159	0,268	0,332
\tilde{K}_{v}	17,0	10,0	6,5	3,9	2,8	2,1	0,72	0,35
			Sam	arium				
6.4.9	0.528	0.628	0.752	0.828	0,940	1,137	1,535	2,030
X8m	0,503	0,468	0,424	0,389	0,351	0,270	0,170	0,110
Csm	0.043	0,065	0,106	0,126	0,195	0,266	0,367	0,415
$K_{\rm v}$	11,7	7,2	4,0	3,1	1,8	1,0	0,46	0,26
			Eur	opium				
640	0.526	0.626	0.749	0.826	0,935	1.133	1,531	2,025
XE	0.488	0.460	0.406	0.382	0.332	0.256	0,156	0,098
CEn	0.046	0.067	0,110	0,136	0,171	0,232	0,314	0,350
K_v	10,6	6,8	3,7	2,8	1,9	1,1	0,50	0,28

ten Folge der K_v -Werte. So fällt beispielsweise der K_v -Wert für Yttrium unter jene des Samariums und Europiums. Die Konsequenzen für die Elutionsfolgen sind experimentell schwer zu prüfen, da bei diesen relativ hohen Konzentrationen der Trennfaktor wenig von Eins verschieden ist. Weiters ist einer graphischen Auftragung der Verteilungskoeffizienten gegen die Gesamtacetatkonzentration (Abb. 1) zu entnehmen, daß — bei sinngemäßer Extrapolation der Kurven nach kleineren Konzentrationen hin — die Yttriumkurve steiler verläuft als die übrigen und sich der Neodymkurve nähert. Diese Vermutung wird auch durch die Beobachtung gestützt, daß Yttrium und Neodym bei niedrigen Acetatkonzentrationen ähnliches Elutionsverhalten zeigen, was sich in der relativen Unschärfe der Trennung dieser Elemente äußert. Wenn man auch noch den Platztausch von Europium und Samarium (Tab. 3, Spalte 5) als real ansieht, obwohl hier der Effekt in der Größenordnung des Meßfehlers liegt, dann ergibt sich ein kompliziertes Bild von den sich beim Ionenaustausch abspielenden Vorgängen. Nichtsdestoweniger

Abb. 1. Verteilungskoeffizienten und Gesamtacetatkonzentration

lassen sich Erscheinungen der geschilderten Art ganz allgemein folgern, sofern gewisse Beziehungen zwischen den einzelnen Stabilitätskonstanten erfüllt sind. Allerdings sind wegen der eingehenden Vereinfachungen keine quantitativen Ergebnisse zu erwarten.

Monatshefte für Chemie, Bd. 94/1

130 J. Mikler, Helga Auer-Welsbach und A. Brukl: [Mh. Chem., Bd. 94

Außerdem ist zu bedenken, daß bei einem Austausch zwischen einund mehrwertigen Ionen die Ionenstärke des Mediums nicht konstant bleiben kann, während die Werte der Stabilitätskonstanten der S. E.-Acetatsysteme stark von der Ionenstärke des Mediums abhängen, wie ein Vergleich der Arbeiten von Sonesson⁵ einerseits und der von Kolat und Powell⁶ andererseits zeigt. Unter der Annahme, daß vom Austauscher nur die freien S. E.³⁺-Ionen in nennenswerten Mengen aufgenommen werden, und unter Vernachlässigung der Unterschiede in der "Adsorptionsaffinität" läßt sich zeigen⁷, daß

$$K_{\rm v} = {\rm prop.} \ \alpha_0$$
 (5)

ist, wobei α_0 den nicht an Acetation gebundenen Bruchteil an Metallion bedeutet (Bildungsgrad) und durch

$$\alpha_0 = \frac{1}{1 + \beta_1 [\text{Ac}] + \beta_2 [\text{Ac}]^2 + \beta_3 [\text{Ac}]^3}$$
(6)

gegeben ist. [Ac] bedeutet die Konzentration der freien, d. h. nicht an Metallion gebundenen Acetationen; β_1 , β_2 und β_3 sind die Bruttostabilitätskonstanten der entsprechenden S. E. Acetatkomplexe. Ein Schnittpunkt der α_0 -Funktionen für ein gegebenes S. E. Paar würde unter dem Vorbehalt der Richtigkeit der Vereinfachungen einen Wechsel in der Elutionssequenz bedingen. Bezeichnen wir die Differenzen entsprechender Stabilitätskonstanten zweier Erden: $\beta_{11} - \beta_{12}$, $\beta_{21} - \beta_{22}$ und $\beta_{31} - \beta_{32}$ mit Δ_1 , Δ_2 bzw. Δ_3 , dann erhält man aus der Bedingung

$$\alpha_{01} = \alpha_{02} \tag{7}$$

für gleichen α_0 -Wert eines Erdenpaares

$$[Ac] = -\frac{\Delta_2}{2 \cdot \Delta_3} \pm \sqrt{\frac{\Delta_2^2}{4 \, \Delta_3^2} - \Delta_1 / \Delta_2} \tag{8}$$

Man sieht, daß [Ac] nur dann positive Werte — und nur diese haben physikalische Bedeutung — annehmen kann, wenn die Differenzen Δ_1 , Δ_2 und Δ_3 nicht alle das gleiche Vorzeichen haben.

In Tab. 4 sind die aus den Sonessonschen Werten berechneten Differenzen zusammengestellt. Die Kombinationen in den umrandeten Feldern genügen der Bedingung verschiedener Vorzeichen, was einem Schnitt der α_0 -Funktionen entspricht. Eventuell ist auch ein Wechsel in der Elutionsposition zu erwarten. In manchen Fällen liegen die Differenzen allerdings in der Größenordnung der Fehlergrenzen der Werte der Stabilitätskonstanten und sind unter Umständen auszuscheiden.

⁵ A. Sonesson, Acta Chem. Scand. **12**, 165, 1937 (1958); **13**, 1437, (1959); **14**, 1495 (1960).

⁶ R. S. Kolat und J. E. Powell, Inorg. Chem. 1, (2), 293 (1962).

⁷ J. Mikler, Dissertat. Univ. Wien (1962).

${ m Stabilitätskonstanten}$
der
Differenzen
Berechnete
Tabelle 4.

	Y	La	Ce	\Pr	$\mathbf{N}\mathbf{d}$	$8\mathrm{m}$	Gd	Dy	H_{o}	Er
$\mathbf{Y}\mathbf{b}$	$\begin{array}{c}+\\+\\+\\220\\+1100\end{array}$	+ 8 + 380 + 2550	+ 190 + 2150	$\begin{array}{c} 21\\ +\\ 30\\ +\\ 1600\end{array}$	$\frac{ }{ } \frac{36}{340} + 2660$		$\begin{array}{c} 25\\ -640\\ -1700 \end{array}$	$\begin{array}{c} & 3 \\ & - & 250 \\ - & 2600 \end{array}$	$\begin{array}{c} + \\ 2100 \\ 2100 \end{array}$	$\begin{array}{c} + \\ + \\ 0 \\ - \\ 1000 \\ \end{array} $
Er	$\begin{array}{c}+\\+\\220\\+2100\end{array}$	$\begin{array}{c}+\\+\\+&380\\+&3550\end{array}$	$\begin{array}{c c} & & \\ & & \\ & + \\ & & 190 \\ & + \\ & 3150 \end{array}$	+ 30 + 2600	${} \frac{40}{340} + 1600$	- 63 - 1130 - 2600	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} & 7 \\ \hline & 250 \\ \hline & 1600 \end{array}$	$\begin{array}{c} & 3 \\ - & 50 \\ - & 1100 \end{array}$	
$_{\rm Ho}$	$\begin{array}{c}+\\+\\+\\270\\+3200\end{array}$	$\begin{array}{c}+&7\\+&430\\+&4650\end{array}$	+ 240 + 4250	$+$ $\frac{22}{80}$ $+$ 3700	$\frac{37}{-290} + 2700$	$\begin{array}{c} & 60 \\ \hline & 1080 \\ \hline & 1500 \end{array}$	+ 26 $+$ 400	200 500		
Dy	+ 13 + 470 + 3700	${}^+_{+} {\begin{array}{c} 11 \\ 630 \\ + 5150 \end{array}}$	- 1 + 440 + 4750	+ 18 + 280 + 4200	- 33 90 + 3200	- 56 - 880 - 1000	$+$ $\frac{22}{900}$ +			
Gđ	$\begin{array}{c}+&35\\+&860\\+&2800\end{array}$	+ 33 + 1020 + 4250	+ 21 + 830 + 3850	$\begin{array}{c}+\\+\\670\\+3300\end{array}$	- 11 + 300 + 2300	- 34 490 1900				
\mathbf{Sm}	+ 69 + 1350 + 4700	$+ \begin{array}{c} 67 \\ + 1510 \\ + 6150 \end{array}$	+ 55 + 1320 + 5750	+ 38 + 1160 + 5200	+ 23 + 790 + 4200					
Nd	+ 46 + 560 + 500	+ 44 + 700 + 1950	+ 32 + 530 + 1550	+ 15 + 370 + 1000						
\mathbf{Pr}	++ 31 - 500	+ 29 + 350 + 950	+ 17 + 160 + 550							
Ce	$\begin{array}{c}+&14\\+&30\\-&1050\end{array}$	+ 12 + 190 + 400								
La	$\begin{array}{c} + \\ - \\ 160 \\ - \\ 1450 \end{array}$									
Ķ										

9*

131

Tab. 5 gibt die nach Gleichung (8) berechneten Werte der freien Acetatkonzentration und die zugehörige Sequenz der α_0 -Werte wieder, welche unter dem Vorbehalt der Richtigkeit der getroffenen Voraus-

Tabelle 5. Elutionssequenzen in Abhängigkeit von der Acetatkonzentration

[4.0]	Sequenzen nach steigenden α_0 -Werten										
[H0]	1.	2.	3.	4.	5.	6.	7.	8.	9.	10,	11.
0,0000											
0.0000	\mathbf{Sm}	Nd	Gd	\Pr	Ce	Dy	$\mathbf{Y}\mathbf{b}$	Ho	\mathbf{Er}	La	Y
0,0022	\mathbf{Sm}	Nd	Gd	\Pr	Dy	Ce	Yb	Ho	\mathbf{Er}	La	Ŷ
0,0107	\mathbf{Sm}	\mathbf{Nd}	Gd	\Pr	Dy	Ce	Yb	Ho	\mathbf{Er}	Y	La
0,0129	Sm	Nd	Gd	\mathbf{Pr}	Dý	Ce	Ho	$\mathbf{Y}\mathbf{b}$	\mathbf{Er}	Y	La
0,0162	Sm	Nd	$\mathbf{G}\mathbf{d}$	\mathbf{Pr}	Dv	$_{\rm Ho}$	Ce	$\mathbf{Y}\mathbf{b}$	\mathbf{Er}	Y	La
0,0175	S	Nd	04	Dn.	Dyr	щo	Vh	Co	Er	v	La
0,0286	SIII	nu	Gru	1.1	Dy	11 0.	10		1.1		т
0,0298	Sm	Nd	Gd	\Pr	Dy	Ho	Υb	Er	Ce	Ŷ	La
0.0401	Sm	Gd	Nd	\Pr	Dy	Ho	Yb	\mathbf{Er}	Ce	Y	La
0,0401	Sm	Gd	Nd	Dy	\Pr	Ho	Yb	\mathbf{Er}	Ce	Y	La
0,0557	Sm	Gd	Nd	Dy	\Pr	Ho	\mathbf{Er}	Yb	Ce	Y	La
0,0630	Sm	Gd	Nd	Dy	\Pr	Ho	\mathbf{Er}	Yb	Y	Ce	La
0,0670	\mathbf{Sm}	Gd	Nd	Dy	Ho	\mathbf{Pr}	\mathbf{Er}	Yb	Y	Ce	\mathbf{La}
0,0925	8	60	NA	Dv.	нo	Er	Pr	Vh	v	Ce	La
0,1056	511	Gu		Dy	110	- DA	<u>, , , , , , , , , , , , , , , , , , , </u>		.r. N 7	a	т.
0.1165	Sm	Gd	Nd	Dy	Ho	Er	Υb	Pr	Ŷ	Ce	La
0 1700	\mathbf{Sm}	Gd	Dy	Nd	Ho	\mathbf{Er}	$\mathbf{Y}\mathbf{b}$	\Pr	Y	Ce	La
0,1798	Sm	Gd	Dy	Ho	Nd	\mathbf{Er}	Yb	\Pr	Y	Ce	La
0,2968	Sm	Gd	Dy	$_{\rm Ho}$	\mathbf{Er}	Nd	Yb	\mathbf{Pr}	Y	Ce	\mathbf{La}
0,5000	\mathbf{Sm}	Gd	Dy	Ho	\mathbf{Er}	Nd	$\mathbf{Y}\mathbf{b}$	Y	\mathbf{Pr}	Ce	La
0,549	Sm	Dv	Gd	Ho	Er	Nd	$\mathbf{Y}\mathbf{b}$	Y	\mathbf{Pr}	Ce	La
0,658	а. Эщ	<i>Р</i> у Ъ	a i	II.		Vh	NA	v	 Dr	Ce	Le
1,515	Sm	Dy	Gd	HO	Er	a r	ING	1	rr T	00 0	136L
	Sm	$\mathbf{D}\mathbf{y}$	Ho	Gd	\mathbf{Er}	$\mathbf{Y}\mathbf{b}$	Nd	Y	\Pr	Ce	La

setzungen als Elutionssequenzen zu identifizieren sind. Man erkennt, daß eine quantitative Übereinstimmung mit den Beobachtungen nicht gegeben ist, doch läßt sich der allgemeine Charakter der mit den Acetatelutionen verbundenen Erscheinungen gut erkennen. Zudem wird bei obiger Behandlung auf Grund der gesetzten Vereinfachungen nur der Teil der Phänomene, welcher durch die stufenweise Komplexbildung bedingt ist, erfaßt, während der Einfluß der "Austauschaffinitäten" unberücksichtigt bleibt. Gerade bei schwachen Komplexen dürfte jedoch der dirigierende Einfluß der Ionengröße allzu große Abweichungen von der monotonen Elutionsfolge verhindern, was zum Beispiel beim Yttrium der Fall sein dürfte. Immerhin konnten wir beobachten, daß die Nd-Y-Trennung bei höheren Acetatkonzentrationen schärfer verläuft als bei niedrigeren, was sich einigermaßen mit der in Tab. 5 zum Ausdruck kommenden Tendenz des Yttriums, mit zunehmender Acetatkonzentration seine Position nach links zu verschieben. deckt. Eine experimentelle Verifizierung für die in Tab. 5 vorausgesagten Positionsänderungen scheint für diejenigen Fälle am aussichtsreichsten, welche Verschiebungen in Richtung auf die normale, durch die Größenverhältnisse der Ionenradien gegebene Sequenz darstellen.

Zusammenfassend kann gesagt werden, daß bei der Acetatelution die Sequenz bestimmt wird:

1. Durch den Einfluß der Komplexbildung, welche infolge der verwickelteren Stöchiometrie bei einer stufenweisen Komplexbildung weniger gut überblickbar ist als im Fall mehrzähniger Liganden. 2. Durch den Umstand, daß sich die Ionenstärke bei der Elution dauernd ändert, was die Werte der Stabilitätskonstanten beeinflußt und 3. durch den dirigierenden Einfluß der Größenverhältnisse der Ionenradien, welcher den Einfluß der Komplexbildung teilweise kompensiert.

Wir danken der Treibacher Chemischen Werke A. G. für gewährte Unterstützung.